Optimal L(d, 1)-labelings of certain direct products of cycles and Cartesian products of cycles
نویسندگان
چکیده
An L(d,1)-labeling of a graph G is an assignment of nonnegative integers to the vertices such that adjacent vertices receive labels that differ by at least d and those at a distance of two receive labels that differ by at least one, where d 1. Let d1 (G) denote the least such that G admits an L(d,1)-labeling using labels from {0, 1, . . . , }. We prove that (i) if d 1, k 2 and m0, . . . , mk−1 are each a multiple of 2k + 2d − 1, then d1 (Cm0 × · · · × Cmk−1) 2k + 2d − 2, with equality if 1 d 2k , and (ii) if d 1, k 1 and m0, . . . , mk−1 are each a multiple of 2k + 2d − 1, then d1 (Cm0 · · · Cmk−1) 2k + 2d − 2, with equality if 1 d 2k. © 2005 Elsevier B.V. All rights reserved.
منابع مشابه
On the outer independent 2-rainbow domination number of Cartesian products of paths and cycles
Let G be a graph. A 2-rainbow dominating function (or 2-RDF) of G is a function f from V(G) to the set of all subsets of the set {1,2} such that for a vertex v ∈ V (G) with f(v) = ∅, thecondition $bigcup_{uin N_{G}(v)}f(u)={1,2}$ is fulfilled, wher NG(v) is the open neighborhoodof v. The weight of 2-RDF f of G is the value$omega (f):=sum _{vin V(G)}|f(v)|$. The 2-rainbowd...
متن کاملDifferent-Distance Sets in a Graph
A set of vertices $S$ in a connected graph $G$ is a different-distance set if, for any vertex $w$ outside $S$, no two vertices in $S$ have the same distance to $w$.The lower and upper different-distance number of a graph are the order of a smallest, respectively largest, maximal different-distance set.We prove that a different-distance set induces either a special type of path or an independent...
متن کاملSome crossing numbers of products of cycles
The exact values of crossing numbers of the Cartesian products of four special graphs of order five with cycles are given and, in addition, all known crossing numbers of Cartesian products of cycles with connected graphs on five vertices are summarized.
متن کاملFormulas for various domination numbers of products of paths and cycles
The existence of a constant time algorithm for solving different domination problems on the subclass of polygraphs, rotagraphs and fasciagraphs, is shown by means of path algebras. As these graphs include products (the Cartesian, strong, direct, lexicographic) of paths and cycles, we implement the algorithm to get formulas in the case of the domination numbers, the Roman domination numbers and ...
متن کامل-graceful labelings of partial cubes
7 Partial cubes are graphs that allow isometric embeddings into hypercubes. -graceful labelings of partial cubes are introduced as a natural extension of graceful labelings of trees. It is shown that several classes of partial cubes are -graceful, for instance even 9 cycles, Fibonacci cubes, and (newly introduced) lexicographic subcubes. The Cartesian product of -graceful partial cubes is again...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 152 شماره
صفحات -
تاریخ انتشار 2005